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Abstract. Many hydrological variables usually show the presence of spatial drifts. Most
often they are accounted for by either universal or residual kriging and usually assuming
low order polynomials. The Universal Kriging matrix ( M ), which includes in it the
values of the polynomials at data locations (matrix F ), in some cases may have a too
large condition number and can even be nearly singular due to the fact that some columns
are close to be linearly dependent. These problems are usually caused by a combination of
pathological data locations and an inadequate choice of the coordinate system. As
suggested by others, we have found that an appropriate scaling can alleviate the problem
by significantly reducing the condition number of M (cond( M )). This scaling, however,
does not affect the linear independence of this matrix. We show  that a QR factorization
of matrix F  leads to a significant improvement on cond( M ). An alternative to drift
polynomials consists on using a set of functions derived from the eigenvectors of the
variogram matrix (Γ ). Although their potential usefulness as interpolating functions
remains to be ascertained, they are optimal from the point of view of  optimizing
cond( M ). In fact we are able to provide a rigorous proof for an upper bound of
cond( M ). Applications of the theoretical developments to hydraulic head data from an
alluvial aquifer are also presented.

1. Introduction

The  sensitivity of the kriging method in general, and the universal kriging in particular,
either to input data or to variogram models have been analyzed by Diamond and
Armstrong (1984), Posa (1989) and O'Dowd (1991). Diamond and Armstrong (1984)
reported results on the relationship between the relative change in the kriging weights
and the condition number of the ordinary kriging matrix. We remind the reader that the
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condition number of the matrix of a system of equations measures the sensitivity of the solution
to modifications on the input data (Atkinson, 1989). If the condition number is too large, the
significance of the results (in this case, the universal kriging weights) can be completely lost.
Posa (1989) studied the condition number of the ordinary kriging method for various
well-known covariance models.  He noticed that unstable situations occur when Gaussian
models without a nugget are used. O'Dowd (1991) showed that for ordinary kriging the
condition number of the matrix M  has a lower bound, which depends on the covariance
model and data location. He also showed some evidence that a suitable way to reduce
cond( M ) consists on scaling the sill (when defined) or conversely substituting the
column and row of 1's to a different constant value. His findings were based upon
theoretical results for a pure nugget variogram. Here we analyze different alternatives to
lower the condition number of the universal kriging (UK) matrix. We first summarize
briefly the UK theory and discuss some of the problems and inconsistencies of the
standard UK matrix. Alternative approaches to overcome such problems include: (1) the
factorization of matrix F , and (2) the use of the eigenvectors of the variogram matrix as
drift functions. The performance of these approaches is evaluated in terms of both the
condition number and the estimation capabilities. To that purpose we use hydraulic head
data from the Andújar alluvial aquifer in Southern Spain.

2. Universal kriging theory

Let Z(x) be a non-stationary random function. Its mathematical expectation

( )[ ] ( )E Z x m x= exists and can be modeled as a linear combination of  basis

functions f (x) ll , =1,...,P. The difference ε(x) Z(x) m(x)= −  is assumed to be a zero

mean second order stationary random function having a variogram εγ  (Samper and Carrera,

1990):

Z(x)= m(x)+ (x); E( (x))= 0ε ε  and  m(x) = a f (x)
1

N

l l∑ (1)

where al  are the drift coefficients. Eq. (1) is assumed to hold locally (otherwise, residual
kriging might be applied). It is also assumed that the variogram is known. The UK estimator is
a linear combination of the data values,

*

1

N

i i

1

N

i iZ (x) = Z x Z( )=∑ ∑λ λ

In order to be unbiased, this estimator  must satisfy:

[ ] [ ]E(Z E( Z )= E(Z)= E m(x)+ (x) = E m(x) = m(x)
1

N

i i
*) =  ∑λ ε

This means that the kriging coefficients λi  must satisfy the following equations
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1

N

i im( x ) m(x)=∑λ (2)

Assuming that m(x) can be appropriately described by a function subspace named f , Eq. (2)

can be rewritten as (Samper and Carrera, 1990):

i

l=1

P

i=1

N

l

i=1

N

i l i

l

P

l=1

P

l lla lf ( ix ) = a f ( x ) = a f (x)λ λ∑∑ ∑∑ ∑
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which holds if

i=1

N

i l i lf ( x ) f (x) l P∑ = =λ                  1..

Kriging equations are obtained after minimizing the estimation error

 
j=1

N

j i j
l=1

P

l l i i( x - x )+ f ( x ) = ( x - x) i = 1,..., N(x)∑ ∑λ γ µ γε ε                   

where lµ  is the l-th Lagrange multiplier and N(x) is the size of the kriging neighborhood

which is not necessarily equal to N because typically only the closest points are considered. Our
calculations assume that N(x)=N, therefore our estimator is global. The system to be solved can
be written in matrix form as

M
F

F

λ
µ

λ
µ

γ






 =

















 =










Γ
T f0

(3)

where λ is the vector of kriging coefficients, µ  is the vector of Lagrange multipliers, F  is a

rectangular matrix with entries ( )f xl i , γ  is a vector of variogram values j j= (x - x )γ γε
and f  is the vector of values of ( )f xl  at data locations.

3. Some inconsistencies of the standard approach

This standard approach has some problems which are discussed below.

3.1. LACK OF HOMOGENEITY ON THE ENTRIES OF KRIGING MATRIX

The units of matrix Γ  are the same as those of the variogram. In the standard Universal
Kriging method, F  is formed by evaluating monomials at data points.  Therefore, the entries of
matrix F are derived from powers of distance, i.e., their units are different than those of  Γ .
Moreover, the entries of matrix F  have very different absolute values. For this reason,
numerical instabilities may arise.
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3.2. STRONG DEPENDENCY ON THE ORIGIN OF COORDINATES

For a two-dimensional variable, the entries of matrix F  are il l i i
m

i
l-mf = f ( x )= ( x ) ( y ) .

Their values depend strongly on the origin of coordinates. In fact, the position of the origin
affects strongly  the condition number of the system which in turn affects the precision of  the

estimator *Z  (Diamond and Armstrong, 1984). In some exploratory calculations using
synthetic data, we performed a standard change of variables by mapping every (x,y) location to
the range (-S,S),(-S,S) being S the sill, and used such standardized coordinates for creating F .

Such simple mapping leads to a decrease of the condition number of the full matrix from 810
to 410 .

3.3. LINEAR  INDEPENDENCE OF THE COLUMNS OF F

The columns of matrix F are built from the values of known functions (typically monomials) at
data locations. They should be linearly independent in order to uniquely determine the drift
coefficients al . Such property is usually not checked because most programs use monomials,

which are supposed to be independent by themselves. However, when considering arbitrary
(x,y) data coordinates, such property does not necessarily hold. It should be noticed that there
are at most N(x) independent column vectors (monomials) in the N(x) dimension space, so P is
strictly bounded.

The problems discussed in Sections 3.1 and 3.2 lead to a large cond( M ),  while that of Section
3.3 may preclude to get a meaningful solution.

4. Suggested approaches

The problems discussed in the previous section can be overcome in several ways. Here we have
considered three possibilities:

1. A proper transformation of the coordinate system in order to balance the columns of F .
This can be done by transforming the coordinate system (translation and scaling) so that any
every point (x,y) is mapped into a square whose x and y limits are within the range (-S,S).
Actual results illustrating the effect of this mapping are presented in Section 5.

2. Choosing the monomials in such a way that the orthogonality of the columns of F  is
ensured. Since there is no unique option for such a choice, we suggest to build the columns
of F  from a set of linearly independent and orthogonal vectors which are dimensionally
consistent with matrix Γ . Such a set can be derived from the singular value decomposition
(eigenvectors and eigenvalues) of matrix Γ .  With this set of functions, the problems
discussed in Sections  3.1, 3.2 and 3.3 are overcome. However, the resulting  drift does not
have a simple structure as that described in Eq. (1). With this method it is possible to
optimize cond( M ). In fact, in Section 4.1 we derive theoretical bounds for cond( M ).
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3. A QR factorization of matrix F . With this approach it is possible to solve directly the
problems mentioned in Sections 3.2 and 3.3. The lack of homogeneity of the entries of
matrix M  (Section 3.1) is managed in an indirect manner.

The first procedure is fairly simple and needs no additional explanation. We will describe with
some detail the other two approaches. The performance of all three approaches using hydraulic
head data is evaluated in Section 5.

4.1. SINGULAR VALUE DECOMPOSITION OF MATRIX Γ

Let E andΛ be the matrices  containing the eigenvectors and eigenvalues of matrix Γ ,

respectively. These matrices are related through Γ Λ Λ= =−E E E E1 T .  Notice that E  is
orthogonal because Γ  is symmetric. Matrix Λ  is a diagonal matrix containing the
eigenvalues. Let PxPD  be a square diagonal matrix holding P eigenvalues and let  NxPG  be a
matrix formed using the corresponding P columns of E . We suggest to build matrix F  such
that

 F = G.D (4)
 Since the eigenvalues of Γ  share its units, so does matrix F . The columns of G  are

orthogonal among themselves,  G G = IT
P.  ( I P is the identity matrix of size P) and

orthogonal to all the columns of E , that is, [ ]G E = I 0T
P.  (here 0  denotes a matrix

having all its entries equal to zero). Another relevant property is

[ ] [ ]D I 0 I 0 I P P

T

PΛ− =1

 From Eq. (3) it follows that

Γλ µ γ
λ

+ =

= fT

F

F





⇒
λ µ γ

λ
+

f

-1 -1

T

Γ ΓF

F

=
=





Premultiplying the first row by FT , and using the second, one obtains
T -1 T -1= - fF F FΓ Γµ γ (5)

This equation holds for any matrix F . By using Eq. (4),  the left-hand side reduces to

[ ]F F D G E E GD D I 0
I

D D D D DT T T T T
P

P TΓ Λ Λ− − − −= =








 = =1 1 1 1

0
The first term on the right-hand-side of Eq. (5) can be rewritten as

T -1 TF Γ Λ Λγ γ γ γ  =   =  = D G E E D G E E G G GT T -1 T T T -1 T T

Consequently, µ  can be derived easily from the following diagonal system

 D Gµ γ= - fT
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The eigenvalues and eigenvectors of matrix M  can be expressed in terms of those of Γ  in a
closed form. Appendix 1 contains the details of such expressions. This appendix contains also a
proof for the upper bound of the condition number of the kriging matrix:

cond cond( )   M ≤ 2 6. ( )Γ
O'Dowd (1991) stated that cond( M ) cannot be less than cond(Γ ). Here we were able to prove
that cond( M ) has a well defined upper bound for the approach based on the singular value
decomposition of Γ .

4.2. QR ORTHOGONALIZATION OF MATRIX F

The QR factorization of matrix F renders a unique set of matrices Q  and R  which satisfy

F QR=
Q Q IT =

where R is an upper triangular matrix. It is straightforward to rewrite the system of equations
(3) in a slightly different manner so that the overall matrix has a lower condition number. The
new form of the system of equations reads as

Γ Q

QT f0


















 =











λ
µ

γ
* * (6)

where µ *
 and f *  are defined in the following manner

( )f f
T* = −R 1  ;           µ µ* = R           (7)

This means that instead of solving Eq. (3) one can solve Eq. (6) and obtain the

expressions of λ  and  µ*
. From Eq. (7) one can derive µ  from µ µ= R -1 *

.

Notice that the orthogonality property of matrix Q  has not been used yet. In fact, it is
possible to re-scale its columns by a factor s  in order to balance the entries of the system

matrix. Moreover, the matrix can be factorized using the fact that Γ Λ=E ET . Therefore,
after introducing the scale factor s the system matrix can be rewritten as

Γ Λs

s

s

sT

T

T

T
TQ

Q 0

E 0

0 I
E Q

Q E 0

E 0

0 I
BLB









 =



























 = (8)

Matrix L  has the same eigenvalues as matrix M  because B  is orthogonal (Atkinson,
1989). Notice that L  has the eigenvalues λ i of Γ  in the diagonal and terms containing

the scale factors in the rest of the first N rows. This fact can be exploited by using the
Gershgorin theorem [see Dahlquist et al. (1980)] which states that matrix L  has N

eigenvalues ( )e si  which verify:
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( ) ( )e s O s i Ni i= + =λ      ,.1 .., (9)

where ( )O s  is an infinitesimal of first order on s  (the limit of ( )O s s/  as s goes to
zero is a constant). The eigenvalues corresponding to the P remaining rows (those with
zeros in the diagonal) behave like

( ) ( )e s O s i N N Pi = = + +     1,..., (10)

Dahlquist et al. (1980) also give a proof that the eigenvalues of a perturbed matrix are
continuous in terms of the perturbation factor. From Equations (9) and (10) it is possible
to relate the condition numbers of matrices Γ  and L . For small s , the largest
eigenvalues of L  will coincide with those of Γ , while the smallest eigenvalues will be
on the order of s . Therefore,  for small s  the condition number of L will behave like

O(1 s ). For large enough s , the condition number grows as s . For intermediate

values of s , we noticed that the evolution of the minimum eigenvalue in terms of s  has

an absolute minimum s* for some moderate s . We tried to estimate such a value in terms
of some norm of matrix Γ , and for some limited analyses we concluded that a good guess

is simply s N*= Γ 1 , where the term in the numerator is the norm of matrix Γ  (the

maximum row sum of the absolute values).  The optimum value s*  is bounded by the sill
(when it is defined).

5. Results for the Andújar case

Previous theoretical analyses have been applied to hydraulic head data from the Andújar
alluvial aquifer in Southern Spain where a uranium mill tailings has caused a uranium plume in
the aquifer (Samper and Carrera, 1995). This case study is a small-scale field problem in which
spatial variability plays a major role. Geostatistical analyses of hydraulic heads in this aquifer
have been carried out by ENRESA (1992) for the purpose of optimizing the head monitoring
network and by  Juanes and Samper (1996) who used residual kriging for estimating the
hydraulic head field. The study area covers about 12 km2  and is bounded by the Guadalquivir
river on the North and  a low permeability mountain on the south. The actual data set used to
test the three procedures is that of Juanes and Samper (1996) which consists of 82 head data
measured in April 1991. In their geostatistical analysis they identified a global linear drift.
Residuals fitted an exponential semivariogram with a sill of 0.23 m2 and an effective  range of
about 1 Km. Using the same data, we have performed universal kriging analyses using four
different methods: (1) linear polynomials, (2) scaled linear polynomials, (3) the method of
eigenvalues , and (4) linear polynomials with a QR factorization. The upper-left plot in  Figure
1 shows a contour map of the residuals (raw data minus spatial drift). This plot was  prepared
using generalized least squares with first order polynomials.
Figure 1 shows also the plots of the spatial distribution of three eigenvectors (factors) of matrix
Γ . These surfaces show some general patterns. In general, the eigenvectors associated to the
largest eigenvalues show the largest spatial variation with clear global drifts (see the upper right
plot in Figure 1).  Eigenvectors corresponding to the smaller eigenvalues tend to show erratic
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spatial patterns. The interpretation of the spatial distribution of other eigenvectors is not
straightforward because they do not reflect any spatial feature of the random function, but rather
are determined by the semivariogram and the data locations.  Their interpretation deserves
additional analyses which have not yet been addressed and will be presented elsewhere.
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Figure 1. Contour map of Andújar raw hydraulic head data (upper left plot) and contour maps of three eigenvectors (factors)
used to represent the spatial drift in the eigenvector method (remaining plots). Dots indicate data locations.

In applying the QR factorization method, we investigated the optimum value of the scale
factor "s".  Figure 2 shows a plot of the minimum eigenvalue of M  as a function of s/s*
(s* is our suggested estimate for the optimum). In this figure the star indicates the true
optimum value. One can see that the true optimum is slightly greater than s*. The
condition number of M  as a function of s is shown in Figure 3.

Table 1 summarizes the results obtained with the four approaches. The fourth  column in this
table indicates the average value of the ratio between cond(M ) and cond(Γ ). Unscaled
monomials lead to much greater condition numbers (eight orders of magnitude in this case!).
The other methods give similar results.  The results for scaled monomials are slightly better that
those of the QR factorization, which in turn are very close to those obtained with eigenvectors.
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Figure 2 Evolution of the minimum eigenvalue for different choices of the s/s* ratio for the Andújar dataset. s
stands for the scale factor used, while s* is the value suggested.The star in the figure indicates the optimum value.
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Figure 3 Evolution of the condition number for different choices of the s/s* ratio for the Andújar dataset. s stands
for the scale factor used, while s* is the value suggested.The star in the figure indicates the optimum value.

For  testing and comparing the estimation capabilities of the different approaches we have
resorted to cross-validation. Cross-validation provides the estimation errors ei and their
corresponding standard deviations σi at all selected locations. Following Samper and Neuman
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(1989), we use  the Negative Log-likelihood (NLL) of the errors as a measure of model
goodness. For Gaussian cross-validation errors, NLL contains two terms S1 and S2 which are
defined as:

NLL e e S ST= + = +−V V1
1 2ln

where  e is the column vector of cross-validation errors, and V is the determinant of their
covariance matrix V .

As expected, cross-validation results are identical for all methods based on polynomials.  Their
NLL values are all equal. The method based on eigenvectors, however,  performs much worse
than the others.

Table 1 Cross validation results the Andújar head data set.

Method S1 S2
NLL

cond

cond

( )
( )
M
Γ

Monomials 20.95 -137.8 -116.8 5.598e+008
Re-scaled monomials 20.95 -137.8 -116.8 1.016

Monomials + QR
factorization

20.95 -137.8 -116.8 1.672

Eigenvectors 253.6 -138.9 114.7 1.618

6.  Conclusions

We have analyzed the problem of the condition number of the universal kriging method.
We have compared the performance of four methods in terms of condition number and
estimation capabilities by analyzing the likelihood of cross-validation errors. Our analyses
indicate that:
1. very important improvements can be attained by re-scaling the coordinates of the data

to the range (-S,S),(-S,S) being S the sill when defined, or the maximum element on
matrix Γ  in other case.

2. a general theoretical result for the condition number of kriging matrix has been
obtained by using the eigenvectors of the variogram matrix. This approach performed
worse than the others, but there is room still for some improvements. The shape of the
fields derived from the eigenvectors have to be studied further because they could
exhibit some interesting properties yet unexplored.

3. QR orthogonalization of matrix F  has proved to be a nearly optimum method. While
the orthogonal property of the columns of F after the QR factorization is independent
of the data set, the same may not always be the case for the re-scaling method.
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Appendix 1: upper bound for cond (M)

Let x be an eigenvector of Γ  and λ  its corresponding eigenvalue. Let z be a vector defined as:

[ ]z x
T= 0 0L Lα .

were α  is a scalar to be determined. We will find the appropriate value of α by imposing that z

to be  an eigenvector of M . Notice that z z z x xT T2 2 21= = + = +α α . If we denote by

N the size of Γ  and N+P the size of M , one has at most P different choices for x to be
proportional to a column of F , and N-P choices for  x to be orthogonal to a column of F .

In the first case, [ ]FT T
x = 0 0L Lλ , therefore  for z to be an eigenvector of M

it should verify

( )[ ] [ ]Mz x z x
T T= + = =λ αλ λ λ λ α0 0 0 0L L L L

* *

which holds if

( )λ α λ
λ λ α

α λ λ
α λ λ

α α α
1 1

1
1 1

1 5

21 2

+ =
=





⇔
+ =

=




⇔ + = ⇔ =
− ±*

*

*

* ,

/

/ /
/

Therefore for each λ  there are two valid eigenvalues λ1
*  and λ2

* . This renders in turn 2P valid

eigenvectors z1 and z2, which are mutually orthogonal since

z z x xT T
1 2 1 2 1 1 0= + = − =α α .
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For the second case, FT x = 0  therefore Mz z= λ  and α=0. This implies that for such

cases, λ λ= *  and the eigenvalues are the same. There are N-P new eigenvectors which are
also orthogonal to those already found.
Let λ max  and λ min  be the largest and the smallest eigenvalues of Γ , respectively. Depending

on whether the corresponding eigenvectors are or are not columns of F , the largest eigenvalue

of M  will be bounded by ( )λ α αmax 1 1 1<  while the smallest will be bounded by

λ αmin 2 . Therefore the condition number of M is also bounded by

cond cond cond cond

cond cond

( ) 1

min 2

2

1 1

M ≤ = = =
−

=

= − −





 ≈

λ α
λ α

α
α

α
α α

αmax ( ) ( ) ( )

( ) . ( )

Γ Γ Γ

Γ Γ

2
2

2

2
2

2

1

1 5

2
2 6

which is valid for any choice of eigenvectors included in F .

Acknowledgments

We want to thank the Uruguay National University, the University of La Coruña and the
Galician Foundation for Civil Engineering (La Coruña, Spain) for their support and funding of
the travel expenses of the first author to Spain and of the second author to Uruguay.


