next up previous contents
Next: Tridiagonal system Up: Finite differences scheme Previous: Column-wise j implicit sweep

  
Finite differences operators

The operators Dox and Doy are defined by (4.10) to (4.14) (Gustafsson et al., 1995; Hirsch, 1991)7.2.


 \begin{displaymath}D_{ox}\xi_{i\;j}=\frac{\xi_{i\;j+1}-\xi_{i\;j-1}} {2 \Delta x...
...D_{oy}\xi_{i\;j}=\frac{\xi_{i+1\;j}-\xi_{i-1\;j}} {2 \Delta y}
\end{displaymath} (7.7)


 \begin{displaymath}D_{-x}\xi_{i\;j}=\frac{\xi_{i\;j}-\xi_{i\;j-1}} {\Delta x} \qquad
D_{-y}\xi_{i\;j}=\frac{\xi_{i\;j}-\xi_{i-1\;j}} {\Delta y}
\end{displaymath} (7.8)


 \begin{displaymath}D_{+x}\xi_{i\;j}=\frac{\xi_{i\;j+1}-\xi_{i\;j}} {\Delta x} \qquad
D_{+y}\xi_{i\;j}=\frac{\xi_{i+1\;j}-\xi_{i\;j}} {\Delta y}
\end{displaymath} (7.9)


 \begin{displaymath}
\begin{split}
&D_{+x}D_{-x}\xi_{i\;j}=\frac{\xi_{i\;j+1} -...
...\;j} - 2 \xi_{i\;j} + \xi_{i-1\;j}}
{\Delta y^2}
\end{split}\end{displaymath} (7.10)


 \begin{displaymath}
\mathcal{D} \xi^{i\;j} = {D_{+x}D_{-x}\xi_{i\;j} + D_{+y}D_{-y}\xi_{i\;j} }
\end{displaymath} (7.11)



Elias Kaplan M.Sc.
1998-07-22