next up previous contents
Next: Finite differences operators Up: Finite differences scheme Previous: Line-wise i implicit sweep

Column-wise j implicit sweep

For the j implicit sweep the approximation is:


 \begin{multline}\frac{\eta^{n+1}_{i\;j}-\eta^{n+{\scriptscriptstyle \frac{1}{2}}...
...j}) D_{oy} \eta^{n+{\scriptscriptstyle \frac{1}{2}}}_{i\;j} = 0
\end{multline}


 \begin{multline}\frac{v^{n+1}_{i\;j} - v^{n}_{i\;j}} {\Delta t} + {\scriptscript...
...tyle \frac{1}{2}}\;j}} -
\varepsilon \mathcal{D} v^n_{i\;j} = 0
\end{multline}


$\displaystyle u^{n+1}_{i+{\scriptscriptstyle \frac{1}{2}}\;j+{\scriptscriptstyl...
...c{1}{4} (u^{n+1}_{i\;j}+u^{n+1}_{i\;j+1}+u^{n+1}_{i-1\;
j}+u^{n+1}_{i-1\; j+1})$     (7.5)
$\displaystyle H^{n+{\scriptscriptstyle \frac{1}{2}}}_{i+{\scriptscriptstyle \fr...
...tyle \frac{1}{2}}}_{i\;j} + \eta^{n+{\scriptscriptstyle \frac{1}{2}}}_{i+1\;j})$     (7.6)

We use (4.6) at the center of the cell and (4.7) at the East and North of the cell ( $\uparrow{}$ in figure 4.1) to solve $\eta^{n+1}_{i\;j}$ and $v^{n+1}_{i\;j}$ for the j implicit sweep.



Elias Kaplan M.Sc.
1998-07-22